
CICS Transaction Server for z/OS
Version 5 Release 3

Debugging Tools Interfaces Reference

GC34-7408-00

IBM

CICS Transaction Server for z/OS
Version 5 Release 3

Debugging Tools Interfaces Reference

GC34-7408-00

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 25.

This edition applies to the IBM CICS Transaction Server for z/OS Version 5 Release 3 (product number 5655-Y04)
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2002, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
What this manual is about. v
Who this manual is for v
What you need to know to use this manual v
Notes on terminology v
Location of topics in the Knowledge Center v

Changes in CICS Transaction Server
for z/OS, Version 5 Release 3 vii

Chapter 1. The debugging tools sockets
interface 1
Setting up CICS to use the debugging tools sockets
interface 1
Using the debugging tools sockets interface 1
Code page conversion 2
Environmental restrictions and programming
requirements 2
CALL instruction programming interface 3

Assembler language Call Format 3
Code CALL Instructions 3

ACCEPT. 3
BIND 4
CLOSE 6
CONNECT 6
FREEADDRINFO 8
GETADDRINFO 8
GETHOSTBYNAME 11

GETHOSTID 12
GETSOCKNAME 13
INITAPI 14
LISTEN. 15
READ 15
SHUTDOWN. 16
SOCKET 18
WRITE 19

Return codes 19

Chapter 2. The debugging tools pattern
matching interface. 23
Invoking the pattern matching interface 23

Notices 25
Trademarks 27

Bibliography 29
CICS books for CICS Transaction Server for z/OS 29
CICSPlex SM books for CICS Transaction Server for
z/OS 30
Other CICS publications 30

Accessibility 31

Index 33

© Copyright IBM Corp. 2002, 2015 iii

iv CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Preface

What this manual is about
This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of IBM® CICS® Transaction Server Version
5 Release 3.

This manual describes the debugging tools interfaces for CICS Transaction Server
for z/OS®, Version 5 Release 3 . The debugging tools interfaces are assembler
language programming interfaces that allow debugging tools to use CICS functions
that are not available in the application programming interface. The interfaces are:
v The debugging tools sockets interface
v The debugging tools pattern matching interface

Who this manual is for
Assembler language programmers who are writing debugging tools that work with
CICS application programs.

What you need to know to use this manual
v You should have a good knowledge of Assembler Language programming in the

CICS environment.
v To use the debugging tools sockets interface, you should be familiar with

programming sockets programs for TCP/IP.
v To use the pattern matching interface, you should be familiar with the use of

debugging profiles to select programs for debugging.

Notes on terminology
The following abbreviations are used throughout this manual:

Term Meaning
CICS When used without qualification in the manual, refers to the CICS element

of CICS Transaction Server for z/OS, Version 5 Release 3

Location of topics in the Knowledge Center
The topics in this publication can also be found in the CICS Transaction Server for
z/OS Knowledge Center. The Knowledge Center uses content types to structure
how the information is displayed.

The Knowledge Center content types are generally task-oriented, for example:
upgrading, configuring, and installing. Other content types include reference,
overview, and scenario or tutorial-based information. The following mapping
shows the relationship between topics in this publication and the Knowledge
Center content types, with links to the external Knowledge Center:

© Copyright IBM Corp. 2002, 2015 v

Table 1. Mapping of PDF topics to Knowledge Center content types. This table lists the relationship between topics
in the PDF and topics in the content types in the Knowledge Center

Set of topics in this publication Location in the Knowledge Center

All topics System programming reference in Reference

vi CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/reference_sysprog.html

Changes in CICS Transaction Server for z/OS, Version 5
Release 3

For information about changes that have been made in this release, please refer to
What's New in the Knowledge Center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading to CICS TS Version 5.3

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 2002, 2015 vii

viii CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Chapter 1. The debugging tools sockets interface

The debugging tools sockets interface is an interface that debugging tools can use
to communicate with a debugger client. It uses the support for TCP/IP provided
by the CICS sockets domain.

The interface supports a limited number of socket calls used in a restricted way,
and is not a full function application programming interface. The interface is not
optimized for concurrent use.

The client set of functions that are explained in the interface support both IPv4 and
IPv6 addressing; however, the server set of functions support IPv4 addressing only.

Setting up CICS to use the debugging tools sockets interface
To use the debugging tools sockets interface, you must set a system initialization
parameter.

About this task

To use the debugging tools sockets interface:
v Specify TCPIP=YES in your system initialization parameters.

The debugging tools sockets interface does not use a TCPIPSERVICE definition;
however, you must ensure that the port numbers that you use for the sockets
interface are different from those that you define in your TCPIPSERVICEs.

Using the debugging tools sockets interface
The debugging tools sockets interface supports the protocols between a TCP/IP
client and a TCP/IP server.

About this task

The protocols are shown in Figure 1 on page 2.

© Copyright IBM Corp. 2002, 2015 1

In addition, the client and the server can issue the following calls:
GETHOSTID
GETHOSTBYNAME
GETSOCKNAME

The WRITE and READ calls can be repeated as often as required, and can be used
to send data in either direction.

Code page conversion
The debugging tools sockets interface does not provide data conversion between
ASCII and EBCDIC code pages.

It is your responsibility to provide the necessary conversion between the EBCDIC
code page use in your CICS system and the code page used in the debugging
client.

Environmental restrictions and programming requirements
Environmental restrictions and programming requirements apply to the debugging
tools sockets interface.

SRB mode
The interface can only be invoked in TCB mode (task mode).

Cross-memory mode
The interface can only be invoked in a non-cross-memory environment
(PASN=SASN=HASN).

Functional Recovery Routine (FRR)
The interface cannot be invoked this interface with an FRR set. Doing so
will cause system recovery routines to be bypassed and severely damage
the system.

Storage
Storage acquired for the purpose of containing data returned from a socket
call must be obtained in the same key as the program status word (PSW)
at the time of the socket call.

INITAPI

SOCKET

BIND

LISTEN

ACCEPT

READ or WRITEWRITE or READ

INITAPI

SOCKET

CLOSE

CONNECT

SHUTDOWN
CLOSE

Client Server

Figure 1. Protocols between client and server

2 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Nested socket calls
You can not issue nested socket calls within the same task. That is, if a
request block (RB) issues a socket call and is interrupted by an interrupt
request block (IRB) in an STIMER exit, any additional socket calls that the
IRB attempts to issue are detected and flagged as an error.

CALL instruction programming interface
These topics describe the general form of the CALL instruction for programs
written in Assembler. The format and parameters are described for each socket call

For more information about sockets, refer to the UNIX Programmer's Reference
Manual.

The entry point for the CICS Sockets Extended module (DFHSOKET) is within the
DFHSOCI module, which should be included explicitly in your link-editing JCL.

Assembler language Call Format
Use the following ‘DFHSOKET' call format for assembler language programs in
order to meet the CICS requirement for quasi-reentrant programming.

►► CALL DFHSOKET,(SOC_FUNCTION, parm1, parm2, ... ERRNO RETCODE),VL,MF=(E, PARMLIST) ►◄

PARMLIST
A remote parameter list defined in dynamic storage DFHEISTG. This list
contains addresses of the parameters that are referenced by the CALL.

Code CALL Instructions
These topics contain the description, syntax, parameters, and other related
information for each call instruction included in the debugging tools sockets
interface.

ACCEPT
A server issues the ACCEPT call to accept a connection request from a client. The
call points to a socket that was previously created with a SOCKET call and marked
by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call performs these
functions:
1. Accepts the first connection on a queue of pending connections.
2. Creates a new socket with the same properties as an existing socket, and

returns its descriptor in RETCODE. The original sockets remain available to the
calling program to accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server
calls.

Note:

1. If the queue has no pending connection requests, ACCEPT blocks the socket.
2. The interface does not screen clients. As a result, the program must control

which connection requests it accepts, but it can close a connection immediately
after discovering the identity of the client.

Chapter 1. The debugging tools sockets interface 3

Example of ACCEPT call
SOC_FUNCTION DC CL16’ACCEPT’
S DS H
NAME DS 0XL16
FAMILY DS H
PORT DS H
IP_ADDRESS DS F
RESERVED DS CL8
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,NAME,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing ACCEPT. Left-justify the field and pad it
on the right with blanks.

S A halfword binary number specifying the descriptor of a socket that was
previously created with a SOCKET call. In a concurrent server, the server
listens on this socket.

Output parameters

NAME
A socket address structure that contains the client socket address.

FAMILY
A halfword binary field specifying the addressing family. The call
returns 2 for the AF_INET socket. For more information on
AF_INET and AF_INET6, see the z/OS 1.9 Communications Server
IPv6 Network and Application Design Guide.

PORT A halfword binary field that is set to the client port number.

IP_ADDRESS
A fullword binary field that is set to the 32-bit IPv4 address, in
network byte order, of the client host machine. IPv6 addressing is
not supported.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not
used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket
number.

If the RETCODE value is negative, check the ERRNO field for an error
number.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes
the process of creating a new socket.

4 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

The BIND call can either specify the required port or let the system choose the
port. A listener program always binds to the same well-known port, so that clients
know which socket address to use when attempting to connect.

The BIND call can specify the networks from which it will accept connection
requests. The program can fully specify the network interface by setting the
ADDRESS field to the internet address of a network interface. Alternatively, the
program can use a wildcard to specify that it will receive connection requests from
any network interface. Set the ADDRESS field to a fullword of zeros for a
wildcard.

Example of BIND call
SOC_FUNCTION DC CL16’BIND’
S DS H
NAME DS 0XL16
FAMILY DS H
PORT DS H
IP_ADDRESS DS F
RESERVED DS CL8
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,NAME,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing BIND. The field is left-justified and
padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
to be bound.

NAME
Specifies the socket address structure for the socket that is to be bound.

FAMILY
A halfword binary field specifying the addressing family. The call
returns 2 for the AF_INET socket. For more information on
AF_INET and AF_INET6, see the z/OS 1.9 Communications Server
IPv6 Network and Application Design Guide.

PORT A halfword binary field that is set to the port number to which
you want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system
assigns the port number for the socket. The program can call the
GETSOCKNAME call after the BIND call to discover the assigned
port number.

IP_ADDRESS
A fullword binary field that is set to the 32-bit IPv4 address
(network byte order) of the socket to be bound. IPv6 addressing is
not supported.

RESERVED
Specifies an 8-byte character field that is required but not used.

Chapter 1. The debugging tools sockets interface 5

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See “Return codes” on page 19, for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 Check ERRNO for an error code

CLOSE
The CLOSE call shuts down a socket and frees all resources allocated to it. If the
socket refers to an open TCP connection, the connection is closed.

After an unsuccesful socket call, a CLOSE should be issued and a new socket
should be opened. An attempt to use the same socket with another call results in a
nonzero return code.

Example of CLOSE call
SOC_FUNCTION DC CL16’CLOSE’
S DS H
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte field containing CLOSE. Left-justify the field and pad it on the
right with blanks.

S A halfword binary field containing the descriptor of the socket to be
closed.

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See “Return codes” on page 19, for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 Check ERRNO for an error code

CONNECT
The CONNECT call is issued by a client to establish connection with a server.

The call performs the following two tasks:
1. Completes the binding process if a BIND call has not been previously issued.

6 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

2. Attempts to make a connection to a remote socket. This connection is necessary
before data can be transferred.

The following call sequence is issued by the client and server:
1. The server issues BIND and LISTEN calls to create a passive open socket.
2. The client issues a CONNECT call to request the connection.
3. The server accepts the connection on the passive open socket, creating a new

connected socket.

The CONNECT call blocks the calling program until the connection is established
or until an error is received. The completion cannot be checked by issuing a second
CONNECT call.

Example of CONNECT call
SOC_FUNCTION DC CL16’CONNECT’
S DS H
NAME DS 0XL28
FAMILY DS H
PORT DS H
IP_ADDRESS DS CL16
RESERVED DS CL8
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,,NAME,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte field containing CONNECT. Left-justify the field and pad it on the
right with blanks.

S A halfword binary number specifying the socket descriptor of the socket
that is to be used to establish a connection.

NAME
A structure that contains the socket address of the target to which the local
client socket is to be connected.

FAMILY
A halfword binary field specifying the addressing family. FAMILY
must match the value assigned to the AF field used in the SOCKET
function request.

PORT A halfword binary field that is set to the server port number in
network byte order. For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hex.

IP_ADDRESS
A 16-byte field that is set to the IPv4 or IPv6 internet address of
the socket to be bound. If FAMILY is set to 2 (denoting an AF_NET
socket), the address is an IPv4 address and the first 4 bytes of
IP_ADDRESS are used. For more information on AF_INET and
AF_INET6, see the z/OS 1.9 Communications Server IPv6 Network and
Application Design Guide.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not
used.

Chapter 1. The debugging tools sockets interface 7

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:

Value Description
0 Successful call
-1 Check ERRNO for an error code

FREEADDRINFO
The FREEADDRINFO call frees the storage that was acquired by the z/OS
Communications Server when the GETADDRINFO call was issued.

Example of FREEADDRINFO call
SOC_FUNCTION DC CL16’FREEADDRINFO’
RESULTS DS A
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,RESULTS,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing FREEADDRINFO. Left-justify the field and
pad it on the right with blanks.

RESULTS
The name of a fullword field that contains a pointer to an Addr_Info
structure or a linked list of Addr_Info structures returned by the
GETADDRINFO command issued by the z/OS Communications Server.

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. For a list of return code values for FREEADDRINFO, see z/OS
Communications Server: IP and SNA Codes.

RETCODE
A fullword binary field that returns one of the following values:

Value Description
0 Successful call
-1 An error occurred.

GETADDRINFO
The GETADDRINFO call returns the 32-bit internet address for the current host
from the GETADDRINFO command that is issued by z/OS Communications
Server to resolve host or service name information. This command translates the
name of a service location (host name) or a service name.

8 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Example of GETADDRINFO call
SOC_FUNCTION DC CL16’GETADDRINFO’
NAME DS CL255
NAMELEN DS F
SERVICE DS CL32
SERVICELEN DS F

HINTS DS A
RESULTS DS A
CANONICALLEN DS F
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,NAME,NAMELEN,SERVICE,SERVICELEN,HINTS,
RESULTS,CANONICALLEN,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing GETADDRINFO. The field is left-justified
and padded on the right with blanks.

NAME
NAME is returned as one of the following strings:
v An EBCDIC character string, up to 255 characters long, set to the node

name (host name) that is being queried.
v An EBCDIC character string set to the IP address of the node (host)

where the service resides.

NAMELEN
The name of a fullword that contains the length of the NAME parameter.

SERVICE
SERVICE is returned as one of the following strings:
v An EBCDIC character string, up to 32 characters long, set to the service

name that is being queried.
v An EBCDIC character string set to the port number of the required

service.

SERVICELEN
The name of a fullword that contains the length of the SERVICE parameter.

HINTS
The name of a field that contains a pointer to a z/OS Communications
Server input Addr_Info structure. The following fields can be specified in
the Addr_Info structure:
v A set of flags (ai_flags) for interpreting the request. Here are the flags:

– AI_PASSIVE
– AI_CANONNAMEOK
– AI_NUMERICHOST
– AI_NUMERICSERV
– AI_V4MAPPED
– AI_ALL
– AI_ADDRCONFIG

For more information about ai_flags, see the Parameters topic in the
z/OS Communications Server IP CICS Sockets Guide.

Chapter 1. The debugging tools sockets interface 9

v The address family (ai_family) that the caller expects to be returned by
the resolver. Here are the address families:
– AF_UNSPEC
– AF_INET
– AF_INET6

v The socket type (ai_socktype) that the caller can accept as a response.
v The protocol (ai_protocol) that the caller can accept as a response.

All other fields in the Addr_Info structure must be set to zero.

If the HINTS parameter is not specified; that is, HINT is set to zero, the
following settings are used:
v All flags are set to off.
v Address family is set to AF_UNSPEC.
v Socket type is set to 0.
v Protocol is set to 0.

Output parameters

RESULTS
The name of a field that contains a pointer to an output Addr_Info
structure. If more than one address is returned, this field contains a linked
list of output Addr_Info structures. Each output Addr_Info structure
contains the following information about the information returned in the
Addr_Info structure:
v A set of flags (ai_flags) for interpreting the address.
v The address family (ai_family) for the address.
v The socket type (ai_socktype) for the address.
v The protocol (ai_protocol) for the address.
v The length (ai_addrlen) of the sock_inet_sockaddr or

sock_inet6_sockaddr structure returned in the ai_addr field.
v The canonical name (ai_canonname) associated with the NAME input

parameter, if NAME was requested using the input AI_CANONNAMEOK
flag. If more than one Addr_Info structure is returned, the canonical
name is supplied in the first Addr_Info structure only.

CANONICALLEN
The name of a fullword binary field that contains the length of the
canonical name that was returned in the first Addr_Info structure pointed
to by the RESULTS parameter.

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains an error
number. For a list of return code values for GETADDRINFO, see z/OS
Communications Server: IP and SNA Codes.

RETCODE
A fullword binary field that returns one of the following values:

Value Description
0 Successful call
-1 An error occurred.

10 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the internet address of a
host whose domain name is specified in the call. A given host can have multiple
alias names and multiple host internet addresses.

The debugging tools sockets interface tries to resolve the host name through a
name server.

Example of GETHOSTBYNAME call
SOC_FUNCTION DC CL16’GETHOSTBYNAME’
NAMELEN DS F
NAME DS CL255
HOSTENT DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,NAMELEN,NAME,HOSTENT,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing 'GETHOSTBYNAME'. The field is
left-justified and padded on the right with blanks.

NAMELEN
A value set to the length of the host name.

NAME
A character string, up to 255 characters, set to a host name. This call
returns the address of the HOSTENT structure for this name.

Output parameters

HOSTENT
A fullword binary field that contains the address of the HOSTENT
structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 An error occurred

Chapter 1. The debugging tools sockets interface 11

The HOSTENT structure

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 2. This
structure contains:
v The address of the host name that is returned by the call. The name length is

variable and is ended by X'00'.
v The address of a list of addresses that point to the alias names returned by the

call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00'.

v The value returned in the FAMILY field is always 2 for AF_INET.
v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 for AF_INET.
v The address of a list of addresses that point to the host internet addresses

returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

GETHOSTID
The GETHOSTID call returns the 32-bit internet address for the current host.

Example of GETHOSTID call
SOC_FUNCTION DC CL16’GETHOSTID’
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing 'GETHOSTID'. The field is left-justified
and padded on the right with blanks.

Output parameters

RETCODE
Returns a fullword binary field containing the 32-bit internet address of the
host. There is no ERRNO parameter for this call.

Alias#1X'00'

INet#1X'00'

Hostent

X'00000004'

X'00000002'

Address of

Address of

Address of

X'00000000'

Address of

Name X'00'

X'00000000'

Address of

Figure 2. HOSTENT structure returned by the GETHOSTYBYNAME call

12 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified
socket. If the socket is not currently bound to an address, the call returns with the
FAMILY field set, and the rest of the structure set to 0.

Since a socket is not assigned a name until after a successful call to either BIND,
CONNECT, or ACCEPT, the GETSOCKNAME call can be used after an implicit
bind to discover which port was assigned to the socket.

Example of GETSOCKNAME call
SOC_FUNCTION DC CL16’GETSOCKNAME’
S DS H
NAME DS 0XL16
FAMILY DS H
PORT DS H
IP_ADDRESS DS F
RESERVED DS CL8
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,NAME,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing GETSOCKNAME. The field is
left-justified and padded on the right with blanks.

S A halfword binary number set to the descriptor of a local socket whose
address is required.

Output parameters

NAME
Specifies the socket address structure returned by the call.

FAMILY
A halfword binary field containing the addressing family. The call
always returns the value 2, indicating AF_INET.

PORT A halfword binary field set to the port number bound to this
socket. If the socket is not bound, zero is returned.

IP_ADDRESS
A fullword binary field set to the 32-bit internet address of the
local host machine.

RESERVED
Specifies eight bytes of binary zeros. This field is required but not
used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 Check ERRNO for an error code

Chapter 1. The debugging tools sockets interface 13

INITAPI
The INITAPI call connects a program to the debugging tools sockets interface. All
sockets programs must issue the INITAPI call before they issue other sockets calls.

Example of INITAPI call
SOC_FUNCTION DC CL16’INITAPI’
MAXSOC DS H
IDENT DS 0CL16
TCPNAME DS CL8
ADSNAME DS CL8
SUBTASK DS CL8
MAXSNO DS F
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,MAXSOC,IDENT,SUBTASK,MAXSNO,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing INITAPI. The field is left-justified and
padded on the right with blanks.

MAXSOC
A halfword binary field set to the maximum number of sockets this
program will ever have open at one time. The maximum number is 2000
and the minimum number is 50. This value is used to determine the
amount of memory that will be allocated for socket control blocks and
buffers. If fewer than 50 sockets are requested, MAXSOC defaults to 50.

Note: This is not the same as the MAXSOCKETS system initialization
parameter.

IDENT
A structure containing the identities of the address space and the calling
program’s address space. Specify IDENT on the INITAPI call from an
address space.

TCPNAME
Reserved — do not specify a value in this field.

ADSNAME
An 8-byte character field. Specify the name of the CICS startup job.

SUBTASK
Specify a null value (X'00000000') for this parameter.

Output parameters

MAXSNO
A fullword binary field that contains the highest socket number assigned
to this program. The lowest socket number is zero. If you have 50 sockets,
they are numbered from 0 to 49. If MAXSNO is not specified, the value for
MAXSNO is 49.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

14 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 Check ERRNO for an error code

LISTEN
The LISTEN call completes the bind, if BIND has not already been called for the
socket, and creates a connection-request queue of a specified length for incoming
connection requests.

Restriction: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is used by a server to receive connection requests from clients.
When a connection request is received, a new socket is created by a subsequent
ACCEPT call, and the original socket continues to listen for additional connection
requests. The LISTEN call converts an active socket to a passive socket and
conditions it to accept connection requests from clients. Once a socket becomes
passive, it cannot initiate connection requests.

Example of LISTEN call
SOC_FUNCTION DC CL16’LISTEN’
S DS H
BACKLOG DS F
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,BACKLOG,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing LISTEN. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to
be queued. Specify a value of 5 for this parameter.

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 Check ERRNO for an error code

READ
The READ call reads the data on a socket.

Chapter 1. The debugging tools sockets interface 15

Data is processed as streams of information with no boundaries separating the
data. For example, if programs A and B are connected and program A sends 1000
bytes, each call to this function can return any number of bytes up to the entire
1000 bytes. The number of bytes returned will be contained in RETCODE.
Therefore, programs should place this call in a loop that repeats until all data has
been received.

Example of READ call
SOC_FUNCTION DC CL16’READ’
S DS H
NBYTE DS F
BUF DS CL(length of buffer).
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,NBYTE,BUF,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing READ. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is
going to read the data.

NBYTE
A fullword binary number set to the size of BUF. READ does not return
more than the number of bytes of data in NBYTE even if more data is
available.

Output parameters

BUF On input, a buffer to be filled by completion of the call. The length of BUF
must be at least as long as the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

-1 Check ERRNO for an error code.

SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call which
attempts to complete all outstanding data transmission requests before breaking
the connection. The SHUTDOWN call can be used to close one-way traffic while
completing data transfer in the other direction. The HOW parameter determines
the direction of traffic to shutdown.

16 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

If you issue SHUTDOWN for a socket that currently has outstanding socket calls
pending, see Table 2 to determine the effects of this operation on the outstanding
socket calls.

Table 2. Effect of Shutdown Socket Call

Shutdown

Socket calls in
local program

Local Program Remote Program

Shutdown
END_TO

Shutdown
END_FROM

Shutdown
END_FROM

Shutdown
END_TO

Write calls Error number
EPIPE on first
call

Error number
EPIPE on second
call*

Read calls Zero length
return code

Zero length
return code

* If you issue two write calls immediately, both might be successful, and an EPIPE error
number might not be returned until a third write call is issued.

Example of SHUTDOWN call
SOC_FUNCTION DC CL16’SHUTDOWN’
S DS H
HOW DS F
END_FROM EQU 0
END_TO EQU 1
END_BOTH EQU 2
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,HOW,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing SHUTDOWN. The field is left-justified
and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
shutdown.

HOW A fullword binary field. Set to specify whether all or part of a connection is
to be shut down. The following values can be set:

Value Description

0 (END_FROM)
Ends further receive operations.

1 (END_TO)
Ends further send operations.

2 (END_BOTH)
Ends further send and receive operations.

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

Chapter 1. The debugging tools sockets interface 17

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call
-1 Check ERRNO for an error code

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

Example of SOCKET call
SOC_FUNCTION DC CL16’SOCKET’
AF DC F’19’
SOCTYPE DS F
STREAM EQU 1
PROTO DS F
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,AF,SOCTYPE,PROTO,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing SOCKET. The field is left-justified and
padded on the right with blanks.

AF A fullword binary field set to the addressing family. Specify a value of 19,
denoting an AF_INET6 socket. You can specify a value of 2 for migration
purposes however, the socket will be limited to IPv4 connections only. A
halfword binary field specifying the addressing family. For more
information on AF_INET and AF_INET6, see the z/OS 1.9 Communications
Server IPv6 Network and Application Design Guide.

SOCTYPE
A fullword binary field set to the type of socket required. Specify 1,
denoting stream sockets. Stream sockets provide sequenced, 2-way byte
streams that are reliable and connection-oriented. They support a
mechanism for out-of-band data.

PROTO
Reserved. Do not specify a value in this field. The interface uses a protocol
of TCP.

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” on page 19 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:

Value Description
≥0 Contains the new socket descriptor
-1 Check ERRNO for an error code

18 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

WRITE
The WRITE call writes data on a connected socket.

Sockets act like streams of information with no boundaries separating data. For
example, if a program wants to send 1000 bytes, each call to this function can send
any number of bytes, up to the entire 1000 bytes. The number of bytes sent will be
returned in RETCODE. Therefore, programs should place this call in a loop, calling
this function until all data has been sent.

Example of WRITE call
SOC_FUNCTION DC CL16’WRITE’
S DS H
NBYTE DS F
BUF DS CL(length of buffer)
ERRNO DS F
RETCODE DS F

CALL DFHSOKET,(SOC_FUNCTION,S,NBYTE,BUF,ERRNO,RETCODE)

Input parameters

SOC_FUNCTION
A 16-byte character field containing WRITE. The field is left-justified and
padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be
transmitted.

BUF Specifies the buffer containing the data to be transmitted.

Output parameters

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “Return codes” for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
≥0 A successful call. A return code greater than zero indicates the

number of bytes of data written.
-1 Check ERRNO for an error code.

Return codes
A table of the error numbers, error descriptions, and the suggested programmer's
response.

Error number Error description Programmer's response

30001 Unknown session token Call your IBM Software
Support Center

30002 Insufficient storage Retry the request when CICS
is not short on storage

Chapter 1. The debugging tools sockets interface 19

Error number Error description Programmer's response

30003 I/O error Retry the request. Data
might not be available at this
time.

30004 Connection closed Determine why the partner
system has closed the
connection, and retry the
request

30005 No socket available Retry the request when more
sockets are available

30006 Client error Call your IBM Software
Support Center

30007 Invalid option Call your IBM Software
Support Center

30008 Missing option Call your IBM Software
Support Center

30009 Not authorized Call your IBM Software
Support Center

30010 State error Call your IBM Software
Support Center

30011 Never associated Call your IBM Software
Support Center

30012 Notification unavailable Call your IBM Software
Support Center

30013 Already associated Call your IBM Software
Support Center

30014 TCP not active Ensure TCP/IP is active in
your CICS region

30015 Scheduled Should not occur. Call your
IBM Software Support
Center

30016 No connection Retry the request when the
partner system can accept
connections

30017 Connection refused Retry the request when the
partner system can accept
connections

30018 Address in use Retry the request when the
partner system can accept
connections

30019 Address not available Retry the request when the
partner system can accept
connections

30020 Insufficient threads Increase the number of
threads for each OMVS
process

30021 Notified Should not occur. Call your
IBM Software Support
Center

20 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Error number Error description Programmer's response

30022 Not pending Should not occur. Call your
IBM Software Support
Center

30023 Lock failure Call your IBM Software
Support Center

30024 Socket in use Retry the request when the
partner system can accept
connections

30025 Timed out Determine why the request
timed out and retry the
request

30026 Task canceled Determine why the task was
canceled, and retry the
request

30027 CEEPIPI error Call your IBM Software
Support Center

30028 Listener attach failure Call your IBM Software
Support Center

30029 TCP/IP unavailable Ensure TCP/IP is active in
your CICS region

30030 TCP/IP already open Should not occur. Call your
IBM Software Support
Center

30031 TCP/IP already closed Should not occur. Call your
IBM Software Support
Center

30032 Unknown listen token Call your IBM Software
Support Center

30033 Unknown session token Call your IBM Software
Support Center

30034 Unknown client token Call your IBM Software
Support Center

30035 Unknown server address Should not occur. Call your
IBM Software Support
Center

30036 Unknown client hostname Should not occur. Call your
IBM Software Support
Center

30037 Unknown server hostname Should not occur. Call your
IBM Software Support
Center

30038 Hostname truncated Should not occur. Call your
IBM Software Support
Center

30039 Repository error Should not occur. Call your
IBM Software Support
Center

30040 MAXSOCKETS hard limit Retry the request when more
sockets are available

Chapter 1. The debugging tools sockets interface 21

Error number Error description Programmer's response

30041 At MAXSOCKETS Retry the request when more
sockets are available

30042 Unknown socket token Call your IBM Software
Support Center

30043 I/O error Retry the request. Data
might not be available at this
time.

30045 INITAPI getmain array fail CICS internal error. Call your
IBM Software Support
Center

30046 HOSTENT getmain fail CICS internal error. Call your
IBM Software Support
Center

30047 SOCKNAME getmain fail CICS internal error. Call your
IBM Software Support
Center

30048 Alias struct getmain fail CICS internal error. Call your
IBM Software Support
Center

30049 Inet struct getmain fail CICS internal error. Call your
IBM Software Support
Center

30050 Alias getmain fail CICS internal error. Call your
IBM Software Support
Center

30051 Inet getmain fail CICS internal error. Call your
IBM Software Support
Center

30052 No room in sock array Increase the value of the
MAXSOC parameter on the
INITAPI request

22 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Chapter 2. The debugging tools pattern matching interface

Use the debugging tools pattern matching interface to determine if a program
instance that you specify matches an active debugging profile. The interface
returns information about the profile that is the best match for the program
instance you specify.

Invoking the pattern matching interface
To invoke the pattern matching interface, LINK to program DFHDPCP, with a
commarea.

Procedure

Use a commarea with a length of 699 bytes or longer and the following structure:

Offset
Hex

Offset
Decimal

Type Length Name Type of data Description

X'00' 0 16 Reserved
X'10' 16 1 Input Specify a value of X'02'
X'11' 17 1 Reserved
X'12' 18 UNSIGNED 1 DPCC_RESPONSE Output

X'01' The specified
program instance
matches an active
debugging profile.

X'02' The specified
program instance
does not match an
active debugging
profile.

X'13' 19 CHARACTER 4 DPCC_TRANID Input Specify the transaction ID that
is used to identify matching
profiles

X'17' 23 CHARACTER 4 DPCC_TERMID Input Specify the terminal ID that is
used to identify matching
profiles

X'1B' 27 CHARACTER 8 DPCC_PROGID Input Specify the program name
that is used to identify
matching profiles

X'23' 35 CHARACTER 30 DPCC_COMP_UNIT Input Specify the name of the
compilation unit that is used
to identify matching profiles

X'41' 65 CHARACTER 8 DPCC_USERID Input Specify the user ID that is
used to identify matching
profiles

X'49' 73 CHARACTER 8 DPCC_NETNAME Input Specify the terminal Netname
that is used to identify
matching profiles

X'51' 81 CHARACTER 8 DPCC_APPLID Input Specify the APPLID that is
used to identify matching
profiles

© Copyright IBM Corp. 2002, 2015 23

Offset
Hex

Offset
Decimal

Type Length Name Type of data Description

X'59' 89 CHARACTER 1 DPCC_SESSION_
TYPE

Output
X'01' The best matching

debugging profile
specifies a session
type of 3270

X'02' The best matching
debugging profile
specifies a session
type of TCP

X'5A' 90 CHARACTER 255 DPCC_IP_NAME_
OR_ADDR

Output For a session type of TCP,
returns the TCP/IP name or
address specified in the best
matching profile

X'159' 345 CHARACTER 5 DPCC_PORT Output For a session type of TCP,
returns the port number
specified in the best matching
profile

X'15E' 350 CHARACTER 4 DPCC_3270_
DISPLAY

Output For a session type of 3270,
returns the terminal Id of the
3270 terminal specified in the
best matching profile

X'162' 354 UNSIGNED 1 DPCC_TEST_
LEVEL

Output If the best matching profile is
for a Language Environment®

program, returns the Test
Level specified in the profile

X'163' 355 CHARACTER 44 DPCC_COMMAND_
FILE

Output If the best matching profile is
for a Language Environment
program, returns the name of
the Command File specified
in the profile

X'18F' 399 UNSIGNED 1 DPCC_PROMPT Output If the best matching profile is
for a Language Environment
program, returns the Prompt
Level specified in the profile

X'190' 400 CHARACTER 44 DPCC_
PREFERENCE_ FILE

Output If the best matching profile is
for a Language Environment
program, returns the name of
the Preference File specified
in the profile

X'1BC' 444 CHARACTER 255 DPCC_LE_
OPTIONS

Output If the best matching profile is
for a Language Environment
program, returns the
Language Environment
options specified in the
profile

24 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 2002, 2015 25

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Privacy Policy Considerations

IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

CICSPlex® SM Web User Interface :

For the WUI main interface: Depending upon the configurations deployed, this
Software Offering may use session and persistent cookies that collect each user’s
user name and other personally identifiable information for purposes of session
management, authentication, enhanced user usability, or other usage tracking or
functional purposes. These cookies cannot be disabled.

For the WUI Data Interface: Depending upon the configurations deployed, this
Software Offering may use session cookies that collect each user’s user name and
other personally identifiable information for purposes of session management,
authentication, or other usage tracking or functional purposes. These cookies
cannot be disabled.

For the WUI Hello World page: Depending upon the configurations deployed, this
Software Offering may use session cookies that collect no personally identifiable
information. These cookies cannot be disabled.

For CICS Explorer®: Depending upon the configurations deployed, this Software
Offering may use session and persistent preferences that collect each user’s user
name and password, for purposes of session management, authentication, and
single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the
user's explicit action to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www-01.ibm.com/software/info/product-privacy/.

26 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www-01.ibm.com/software/info/product-privacy/

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 27

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

28 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory - base, GI13-3375
CICS Transaction Server for z/OS Program Directory activation module - base,
GI13-3376
CICS Transaction Server for z/OS Program Directory activation module - Developer
Trial, GI13-3377
CICS Transaction Server for z/OS Program Directory activation module - Value Unit
Edition, GI13-3378
CICS Transaction Server for z/OS What's New, GC34-7437
CICS Transaction Server for z/OS Upgrading to CICS TS Version 5.3, GC34-7436
CICS Transaction Server for z/OS Installation Guide, GC34-7414

Access to CICS
CICS Internet Guide, SC34-7416
CICS Web Services Guide, SC34-7452

Administration
CICS System Definition Guide, SC34-7428
CICS Customization Guide, SC34-7404
CICS Resource Definition Guide, SC34-7425
CICS Operations and Utilities Guide, SC34-7420
CICS RACF® Security Guide, SC34-7423
CICS Supplied Transactions, SC34-7427

Programming
CICS Application Programming Guide, SC34-7401
CICS Application Programming Reference, SC34-7402
CICS System Programming Reference, SC34-7429
CICS Front End Programming Interface User's Guide, SC34-7412
CICS C++ OO Class Libraries, SC34-7405
CICS Distributed Transaction Programming Guide, SC34-7410
CICS Business Transaction Services, SC34-7403
Java Applications in CICS, SC34-7417

Diagnosis
CICS Problem Determination Guide, GC34-7422
CICS Performance Guide, SC34-7421
CICS Messages and Codes Vol 1, GC34-7418
CICS Messages and Codes Vol 2, GC34-7419
CICS Diagnosis Reference, GC34-7409
CICS Recovery and Restart Guide, SC34-7424
CICS Data Areas, GC34-7406
CICS Trace Entries, SC34-7430
CICS Debugging Tools Interfaces Reference,GC34-7408

Communication
CICS Intercommunication Guide, SC34-7415
CICS External Interfaces Guide, SC34-7411

© Copyright IBM Corp. 2002, 2015 29

Databases
CICS DB2® Guide, SC34-7407
CICS IMS™ Database Control Guide, SC34-7413
CICS Shared Data Tables Guide, SC34-7426

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7441
CICSPlex SM Web User Interface Guide, SC34-7451

Administration and Management
CICSPlex SM Administration, SC34-7438
CICSPlex SM Operations Views Reference, SC34-7447
CICSPlex SM Monitor Views Reference, SC34-7446
CICSPlex SM Managing Workloads, SC34-7444
CICSPlex SM Managing Resource Usage, SC34-7443
CICSPlex SM Managing Business Applications, SC34-7442

Programming
CICSPlex SM Application Programming Guide, SC34-7439
CICSPlex SM Application Programming Reference, SC34-7440

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7449
CICSPlex SM Resource Tables Reference Vol 2, SC34-7450
CICSPlex SM Messages and Codes, GC34-7445
CICSPlex SM Problem Determination, GC34-7448

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 5 Release 3 .

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

30 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS™ system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 2002, 2015 31

32 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Index

A
AF parameter on call interface, on

SOCKET 18

B
BACKLOG parameter on call interface,

LISTEN call 15
BUF parameter on call socket interface 3

C
Call Instructions for Assembler, PL/I, and

COBOL Programs 3
CLIENT parameter on call socket

interface 3
COMMAND parameter on call socket

interface 3
content type mapping v
content types v

D
data translation, socket interface 3

E
ERRNO parameter on call socket

interface 3

F
FLAGS parameter on call socket

interface 3

I
IOV parameter on call socket interface 3
IOVCNT parameter on call socket

interface 3

K
Knowledge Center v
Knowledge Center content types v

L
LENGTH parameter on call socket

interface 3

M
MAXSOC parameter on call socket

interface 3

MSG parameter on call socket
interface 3

N
NBYTE parameter on call socket

interface 3

O
OPTNAME parameter on call socket

interface 3
OPTVAL parameter on call socket

interface 3

P
PROTO parameter on call interface, on

SOCKET 18

R
REQARG and RETARG parameter on call

socket interface 3
RETCODE parameter on call socket

interface 3

S
SOCTYPE parameter on call interface, on

SOCKET 18

T
TIMEOUT parameter on call socket

interface 3
trademarks 27

U
utility programs 3

© Copyright IBM Corp. 2002, 2015 33

34 CICS TS for z/OS 5.3: Debugging Tools Interfaces Reference

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 5 Release 3
Debugging Tools Interfaces Reference

Publication No. GC34-7408-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
GC34-7408-00

GC34-7408-00

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP189)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

GC34-7408-00

	Contents
	Preface
	What this manual is about
	Who this manual is for
	What you need to know to use this manual
	Notes on terminology
	Location of topics in the Knowledge Center

	Changes in CICS Transaction Server for z/OS, Version 5 Release 3
	Chapter 1. The debugging tools sockets interface
	Setting up CICS to use the debugging tools sockets interface
	Using the debugging tools sockets interface
	Code page conversion
	Environmental restrictions and programming requirements
	CALL instruction programming interface
	Assembler language Call Format

	Code CALL Instructions
	ACCEPT
	BIND
	CLOSE
	CONNECT
	FREEADDRINFO
	GETADDRINFO
	GETHOSTBYNAME
	GETHOSTID
	GETSOCKNAME
	INITAPI
	LISTEN
	READ
	SHUTDOWN
	SOCKET
	WRITE

	Return codes

	Chapter 2. The debugging tools pattern matching interface
	Invoking the pattern matching interface

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	A
	B
	C
	D
	E
	F
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U

	Readers’ Comments — We'd Like to Hear from You

